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SCATTERING MECHANISMS FOR
SEMICONDUCTOR TRANSPORT

CALCULATIONS

J. Bude
Beckman Irstitute for Advanced Science and TecAuology and BCB

University of Illinois at Urbana-Champaign, Illinois 6101

Monte Carlo simulations for transport in semiconductors numerically
solve the Boltzmann equation while offering the physically intuitive picture
of free flights and carrier scatterings on a microscopic level. The aim of a
good Monte Carlo simulator is to give the most physically correct realiss.
tion of the scattering and free flight processes in an ecient manner. This
chapter treats the scattering mechanisms and their implementation in do.
tal. The basic scattering mechanisms treated in this chapter fall into the
categories of phonons, static impurities, and scattering due to the coulomb
potential of other carriers (carder-carrier interactions). Photon scattering
is important in specific cases (radiative recombination rates for instance),
but occurs on time scales much longer than the scattering processes men-
tioned above, and so is not usually a factor in determining basic transport
parameters.

In almost all approaches to electron transport in crystals, the electrons
are decoupled from the ions, impurities, and from each other, and familiar
Bloch states are assumed for a complete basis set for the electrons. Thea,
the effect of each of these interactions is reintroduced as a perturbation to
the simple, one-electron states forcing transitions between them, i.. scatter-
ing. In order to accomplish the decoupling, one makes use of the adiabatic
approximation (Born-Oppenheimer approximation) which is the topic of
the first section. However, the Boltsmann equation, which is the basis for
all Monte Carlo simulations, is a fully classical equation, originally derived
for transport of gasses whose constituents interact weakly. The generalisa.
tion of this equation to the semiclassical regime in which collisions are seen
as localised events in space and time but calculated quantum mechanically
is a simple extension of the classical Boltzmann equation. The steps lead-
ing to this extension which are relevant to the treatment of scattering are
discussed in the second section of this chapter. It is then easy to obtain the
proper form for the scattering rates. Then, a short discussion of dielectric
screening (an important consideration for the calculation of scattering) is
given. The remainder of the chapter is devoted to the calculation of specific
scattering rates and their implementation in Monte Carlo simulations.



1 The Adiabatic Approximation

To begin our discussion of electron transport in semiconductors, we define
electrons to be in one of three classes: core electrons, which are tightly
bound to the nuclei, valence electrons, which are loosely bound and form
the covalent bonds between ions, and conduction electrons. Valence electron
states lie beneath the band gap and are completely filed at sero temper-
ature. Electrons which occupy the excited states above the band gap are
termed conduction electrons. In the following discussion of the adiabatic
approximation, the crystal is decomposed into ions (the nuclei and the core
electrons treated as a unit moving rigidly together) and the outer elecftron
which are either valence electrons or conduction electrons.

The effect of the lattice (ions) on electron transport is typically eval-
uated by making use of the adiabatic approeimaiioA which separates the
electronic (outer electrons) and ionic motion so that their interaction may
be treated in perturbation theory. The crystal Hamiltonian in the adiabatic
approximation can be derived from the general Hamiltonian as follows. The
full Hamiltonian is [1,

,,= T .((R}) + U,.({R}) + T.,((,)) + U..({,)) + U.,({r,. {R}) (1)

where the ionic and electronic kinetic energies are T and T., and the
potential energies U1. and U... (U.. is the electron-electron interaction.)
Uj is the electron-ion interaction, and the ion and electron coordinates
are denoted by {R} and {}. Because the ions are more massive than the
electrons, they will move much more slowly. The key step in formulating
the adiabatic approximation is the assumption that the electrons respond
adiektic.aU to the motion of the ions - the ion motion does not force
transitions between electronic states, but the electron eigen-states evolve
adiabatically as the ion positions change. Then, for a fixed set of ion coor-
dinates {R), there corresponds a full set of electronic elgen-functions:

IT.,({,)) + U..({) (2)

+U.((r}, {R))].((,), (R)) = ES({R})#.({),({}), (3)

and the eige.-function of the full Hamiltonian Hiif = Elof, is given by,

4 = X -.( })).(w}, {,Rz}) (4)

[Ti.,((R)) + U.({R}) + E.] x.((R)) = ',. x.((R})• (5)

In (5) several small terms have been neglected which involve the action of
Ti. on the electronic wave-function. This is a justifiable approximation
since these terms have been shown to be of order (m/M)3/2 where m is
the electron mass and M is the ion mass (see [11). The ionic wavefunctions
must be calculated self-consistently with the electronic wavefunctions as
shown in (5).

In order to untangle the electron states from each other, the Hartree or



Hartree-Fock approximation can be employed which decouples the many-
electron state into simple, one electron states by the introduction of ex-
change and correlation energies. The electron-electron interaction U.. in-
troduces another effect which dresses the remaining coulomb interactions,
such as U,,, with a screening cloud resulting in screened interactions (see
section 3). We shall designate this screened electron-ion interaction as 0.,.
Similarly, the electron-electron polarization screens other coulomb interac-
tions such as the interaction of conduction electrons (holes) with ionised
impurities, 's, and the electron-electron (carrier-carrier) interaction be-
tween conduction electrons or between conduction electrons and valence
electrons, V,.. Vj and V.. are assumed weak and treated as the perturba-
tions responsible for ionized impurity scattering and impact ionization (the
inverse Auger process) discussed in later sections of this chapter.

The many electron state is retrieved by placing electrons into the one
electron states obeying the Pauli exclusion principle. This is the essence of
the one-electron approximation for which,

[T.,(r) + O.(r, R) + [x] O.(r, (RI) = E()((R})).(., {R), (6)

where TaX is the exchange energy.
The electron mobilities are generally large in most semiconductors, and

it is appropriate to treat the electron-ion interaction tj as a perturbation
(2]. Furthermore, bemuse ionic vibrations involved are relatively small, a
good choice for a perturbation approach to decouple the electrons from the
ions is an expansion in the displacements of the ions from theWr equilibrium
positions uO(). If these equilibrium positions are designated as {(j, the
solution of (6) for the one-electron wave-functions yields the aymiiar Block
wave-functions of band index n and wave-vector hs:

[T.a(,) + 0.,(,. (A")) + [,,,x] #,.a(,.) = ,,(k)#.(,.) (7)

s.() .(.)= E3(k) ,.&(r), #,(r) = u.a(,)." .

Labeling the equilibrium lattice sites by RIO for integers 1, the basis vectors

a, and keeping only the fArt two terms in the expansion of 0.j(r - RI),

.,(r- P,) f V.,(r -)? - a) + "(A,). VjO.,(r - R,)],: , (8)

the one electron crystal Hamiltonian in the adiabatic approximation be-
comes:

H,.. = T.j + V.(,) + V,(r, R) + Mi(,) + V..,?') (9)

V,(,) = R,).v&0,(-R-a)

Here, .(r) is the equilibrium periodic crystal potential, 0.,(r, ({')). V.(r)
represents the phonon scattering perturbation.

The ion eigen-states are, (to second order in the ion-ion interaction)



harmonic oscillator states or phonons. Specinially, the I*& Hamiltonian
is diagonalised by appealing to the raising and lowering operators for the
normal modes of vibration, the phonon modes of the crystal. In the phonon
occupation number basis, (3)

I5, = !E&is~qa+q + (10)42~q)

where a+ (q) and aj (q) are the raising and lowering operators for the phonon
mode of wavevector q and branch j. In this notation, u(RA) can be ex-
pressed by an expansmon over the normal modes of wavevector q of the
lattice as (4]

= [2N.[(11

where N is the number of primative cells in the lattice, m. Is the mass of
the ion at basis location a, and 4 is the phonon wavevector.

2 Scattering in the Semi-classical Boltzmann
Equation

To derive the expressions for scattering in the semi-classical Boltzman
equation (SCBE), we start with the equation of motion for the density ma-
trix p for the adiabatic crystal. As discussed in section 1, the crystal system
can be separated into a carrier pat (conduction electrons or holes) and a
phonon part. The phonons are considered to be a thermodynamic heat
bath in equilibrium at some temperature T. Then, weakly coupled to it are
the carriers which we can enumerate with the Block wavevector and band
index quantum numbers. urthermore, the carrers are weakly coupled to
each other, V., and to impurities, V. As noted above, these interactions
are weak, and we can approximate the full density matrix as a product of
the carrier density matrix and the equilibrium phonon density matrix at all
times. This derivation ignores V., so that simple one-particle states can be
used; however, to Include V. to rst order, two particle aatisymmetedsed
states can be chosen instead. For one-particle states, the carrier density
matrix is labeled only by the wavevector k (PZi,) (suppressing %) and the
phonon bath density matrix by py = - 8. Here, = 1/haT, where
A, is Boltsmun's constant, and M& = HI, the bath (ionic) Hamiltonian
given above. In general, the quantum analogue of the phase space distribu-
tion function is the Wiper distribution which is a trasformation of p. To
demonstrate the form of the scattering kernel (Ocollision integral') in the
SCBE, the field can be ignored and it is permissible to identify the diag-
onal of ph&, as the distribution function f(k) which occurs in the classical
Boltsmann equation.

First, the standard quantum Liouville equation neglecting the electric



field is:

& ep (12)

where the hyper-operator notation

A"DBa[A, B]=AB -BA (13)

has been employed and A and B are operators. Ha.. is the adiabatic Hamil-
tonian as derived in section 1.

The projection operator method (see for example Kubo [5J) separates
the diagonal of the system density matrix so that an equation for the time
evolution of pIP1 = f(k) is obtained. Then, the two projection operators

= _ ta0s~ (14)

I = -P (15)

with the properties PP=P, QQ =Q, and PQ =QP=O, can be used in
order to derive equations. of motion for the diagonal and off-diagonal parts of
p in terms of each other. Here, t5j Is the many body trace over the phonon
bath states. The projection operator P projects the portion of p 'which
is diagonal in the carrier quantum numbers (containing the probability of
occupancy of the carrier stationary states) and leaves the phonon, bath in
its equilibrium coafiguration.

By substitution, we arrive at an equation for only the diagonal part in
the form,

where the density matrix has been assumed to be diagonal at t = 0. Here,
all the perturbations discussed earlier have been included in HP.

Then, noting the hyper-operator identity for operators A and B,

-~B = ABe-A (17)

and that
ei- - U(tt' (8

where U.Qt, e') is the Schroedinger picture propagator for the full Baznllto-
nian from t to e, we can write equation (16) in terms of these propagators
fill,

RPQ = ,P(H,)x /o dtgU. (t 9)(H) x PpQ)u. e, t). (1)

Since H. is considered weak, it can be neglected in the exponential of (18)
compared to H, and Ho =TZ + V.. This allows an expression of U.in



terms of products of the tee propagators for the bath and the carriers,

u., ,') w c f("'s) .- f '*'-o). (A0

If the matrix element for the electron phonon interaction given in (10)
is defined as,

=V)~ < n'k' I V,(r) I nk >, (1

where the phonon operators in i(RA) have produced to N1, as discussed
above, and the matrix element for the non-phonon scattering terms is de-
fined as

(V.)j~h -=< uk' I Vi(r) I nk > (22)

for the Oh& perturbation, then the equation of motion for pgj, = f(k) is given
by,

~fkt) (23)

Me [T*g2 (hT k; t(kt') - Tkk(h, " k~tIde +

M 2e frT (k',.h f e - T,,(k, k,; t1f(k, £')dtE I (Vo',)1, 2 ; 'Jo'

With,
T1(hk')kj I~kwk')i' (24)

T(k, hl) = (Nh-Aa + j-(i)(&ua.vt +

(25)

with w.(k) =EBs)/&. Tg(h,k'Aland T..(h.k') are functions -socated with
non-phonon and phonon scattering from & to h' respectively. Furthermore
the trace over the phonons and the action of the raising and lowering opera-
tors in the electron-phonon perturbation have produced the factors Nit +1I
and N1, for emission and absorption respectively with Nj, being the Bose-
Einstein average occupation number for the phonon of wavevector q and
phonon branch t.

N1 C AP4WJ* - I (26

If f(t) were outside of the time integrals, the integral over t of the
T(k, hl) becomes the familiar delta functions of energ conservation. For
example,

lizn dt'Re (Ti(k, W; t')) --o ih(B(k) - E(k')) . (27)

Since f(t) typically changes very little in the time it takes to establish
a delta function, f(f) can indeed be taken outside of the time integral.
The result is the standard Boltzmann equation with the scattering rate



S(k, k) from k to h' given by the familiar Golden Rule expression for energy
conservation:

S(k, k'V) = lI (V)., 16(E() - E(w)) (28)

for elastic scattering processes, and

S,(h, ') = -v( r, + * 1) I(V,)b,, I'(E(k) - E(h') w,) (29)

for phonon scattering processes where the upper sip is taken for emission
and the lower sin for absorption and q = k -kW. Thus, the scattering rates
in the SCBE are simply given by the Fermi Golden Rule from quantum
mechanics.

However, the scattering events have been treated as if they happened
instantaneously as a result of the approximation in (27). This approxima-
tion breaks down in three cases. The first cae Is obvious. If transients are
to be resolved on a time scale of the order of the time it takes to estab.
lsh (27) and the scattering rates are high, f(k, t) cannot be pulled out of
the time integral and the simple forms in (28) or (29) will not apply. If
the perturbations are sufficiently weak, then f(k,t) can still be removed
from the time integral, but (28 and (29) must be replaced with partially
completed delta functions, which relax energy conservation. This is just a
manifestation of the energy and time uncertainty principle.

Second, if scattering rates are high, the approximation of a weak inter-
action leading to equation (18) breaks down, and in the time it takes to
establish the delta function in (27), the original state can decay appreciably.
To account for the depletion of the initial state in the finite time it takes
for the collision to become 'complete the approximation in (18) must be
improved to include the effect of H, in U, (t, e). One way to account for
Hp Is tc calculate the full propagator U.,t') from field theory. This leads
to two additions to (23). First, the simple propagators In the scattering
terms are dresed by virtual transitions in the self-energy E(,Z) [61. The
second addition unfortunately leads to the inclusion of terms which do not
resemble the Boltsmann equation. Typically these terms ae assumed smali
and are ignored. At present, it is unclear what effect these terms have. Fol-
lowing the general approach that these terms are small, we can augment
the SCB I including E(k, B) in equation (18).

Assuming that the self-energy can be calculated, (see for instance refer-
ence [73 for a self-consistent calculation of the self-energy for realistic band
structures) quantum field theory states that for t > e (6),

U.( ,; at') = e-t(l()+A()X%-(1Ih)X-) (30)

with

A(k) = Ae(E(k))
r(k) = Im((k)) . (31)



Physically, A(h) corresponds to a As the energy level z(&). and r(k)
corresponds to %he mite lifetime of the state h. For example, the probability
that a Particle which starts at time e in state h is in stte k at Us"eS (i *a e)
is

I U.(k;j,')I' = -IrpIXt-e'). (32)
The total scattering rate out of state A, S,.j(k), can be identified as

S,. 5 k) =(33)

by interpreting the lifetime of the state as the inverse of the total scattering
rate. (This can also be shown through application of the Optical Theorem of
quantum mechanics [81.) This clearly demonstrates the connection between
high scattering rates and the finite lifetime of the state.

When (32) is substituted into (23), the limit in equation (27) becomes,

A(ES r') a (34)

Ilin j e.- itc (8(),A(k)5(k+A(h')XI-e),- *('N)+rN")XI-e')

ft r(4)+ F(B')
-I(B + A(z) - Fr - A(Z'))3 + (r(E) + jp3

Therefore, one way to add the effects of high scattering rates to the SCBX
is to replace O(Z- Z) with A(, J)whichs the familiar Larentsanline
shape. The effect of broadening the delta funaction through high scattering
rate is termed coffsi.,i irosdeniag.

Lasty, Ifa large electric field is present, the carriers can be accelerated
appreciably during the time of the collision. This is referred to the intra.
eellinal fiel effecf In. general, this effect can As broaden the enrgy
conserving delta function, however, it is more dillcult to deal with in a
compact way. The interested reader is refeuted to the following references
for a detailed treatment of this elfect and collision broadening. (911 .
Also, for an overview of attempts to include collision broadening and the
intracollisional field effect in Monte Carlo Simulations sac [11*11.

3 Dielectric Screening
As discussed in section 1, the scattering potentials V"., j and V, wre
self-consistent, screened potentials which result from bare perturbations.
Because in most case the bare potentials are simple Coulomb potentials,
9(q) = l/(4rcoq3), the esiest way to calculate the self-consistent perturba-
tions is to screen the bare perturbations with the dielectric function which
connects the two.

Suppose the potential, V..(r, t) is introduced as a bare, external poten-
tial to the crystal The resulting (true) potential felt at time e' and position
9' is j, (r', ' and the induced charge is pg (P. t). If V.. is weak enough
that first order perturbation theory Is adequate, then we can calculate the



redistribution of chage, pj.(r, t) as a Unear functional of the self-consistent
potential V..(, t). In general [181

r' t) = f der, f dx(~rr; t - t)v,(r',te) (35)

where X(r, r'; t - t'), the electronic susceptibility, is calculated from int or.
der perturbation theory in which Vt, is the perturbation. A related quantity
called the dielectric function can similarly be defined:

V.. (r. 0) = f ev f de'(r, , t - o'v. (9, t). (34)

The 'inverse" of the dielectric function is the quantity we want since it
expresses the true potential in terms of the bare (external) potential.

The Fourier transform p(q + G, w) of equation (35) can be written,

pi. (q+0,w) = [ d(q'+G')x(q+G.q'+ '; w) V..(q'+G',.w), (37)

where G is a reciprocal lattice vector, q is a wavevector in the Ants Bilouil
sone (BZ), and Val is the crystal volume. Because X is lattice transaon.
ally invariant, x('r' ) = x(r + Rj, r' + Rue), and the integral in equation
(35) becomcs a summation: 114)

p.(q + Gw) = Fx(q + G,q + G',.w) V.1(q + G',w). (38)

A similar result holds for c(, + G. q + W, w):

V..(q+ , w) = ,(q +G,q+G',.) V,.(q+G',w). (39)

Application of Poisso•'s equation connects V., with V.. [161 Fouier
transforming the Poisson's equations for the total charge p = pA +p.. and
the external charge P. we have,

(q+G)3Vt,(q+G,w) = -- !p( +G,,) (40)

.(q+O)V.(q+Gu) - ,-P..(q+Gw). (41)

Solving (40) and (41) for pi. and substituting this into (38) identifies the
dielectric function in (39) as:

e(q+O.q+G',w)=6 ,- x( + G, q + ',uw). (42)
t.(t + G)3

The random phase approximation (RPA), a type of fArst order perturba-
tion calculation Including the temperature through the distribution function



f.(A), defines x s

X(q+G,q+Oe.) = + f..(k+q)-.(k)
Salk E-.(, + q) - R.(k) + A,

< IL I "c'( +G)' I n'(k + q) >< "'(k + q) I •(+) " I nk > (43)

This together with (42) expresses the effects ofscreening on a bare, external
potential. Then, the inverse of the matrix e(q + G, q + G"), where the rows
and columns are labeled by G and G', expresses the true perturbations V.,
V' and V in terms of the bare Coulomb potentials which give rise to the
perturbations. A plot of ,(q, q) is shown in figure 1 as a function of w for
silicon at sero temperature calculated using equation (43).

Several simplifications of this result are applicable for scattering in semi-
conductors. First, the off-diagonal terms can usually be nelected for non-
phonon scattering since they are usually smaller than the diagonal. They
must be kept for phonon scattering since they are necessary to fulfill certain
sum rules ([2]). Furthermore, since there are usually many more electrons
in the valence bands than there are electrons (holes) In the conduction (vs-
lence) bands, f.(k) v I for valence bands and f.(k) ow 0 for conduction
bands. This is the sero temperature approximation.

One simple way to include the effect of the fre conduction band elec-
trons in the T = 0 model is to add the susceptibilities for the T = 0 case,
X° and the susceptibility for a free electron gas x with density equal to
the density of conduction band electrons. Two expressions for X' am given
by the Thomas-Fermi screening theory and the Lindhard screening theory
for a free electron gas [17). For example, in the Thomas-Fermi theory

xe(q) _ 2 I@EE)(4

where fo is an equilibrium Fermi distribution in the conduction bands, and
BI is the Fermi energy. Then, a natural screening length can be defined as

e2Yo(S, RI) (45)

so that
c(q) = + J.()

92*(6
Having derived relations between the bare perturbing potentials and

the screened potentials which result, we can explicitly calculate important
scattering matrix elements for use in the SCBE of section 2.
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Figure 1: Real and Imaginary parts of the frequency and wayevector de-
pendent dielectric function in silicon calculated using the random phase
approimation (RPA).
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4 Phonon Scattering

4.1 Phonon Perturbation Potential

In this section, the phonon perturbation is rewritten in terms of the bare
potential and the dielectric function, and the matrix elements (V ) ,,,.
from (21) are calculated. From section 1, the perturbing potential was
found to be V,(,) = E U*(A) • Vam-j(r - -a) (47)

where #.i(r - Rj - a) is the self-consistent pseudopotential (effective po-
tential outside of the ion itself) felt by an electron at r due to the ion at
site A and basis vector a, and Vjg • .E(r - A;) is the local gradient of
that pseudopotential taken with respect to the ionic location. Proceeding
as in Vogl (2], we Fourier transform V(r):

v,(r) = Ec e'(f+*)"OV(q + G) (48)
fG

where, q is a vector in the first Brillouin zone and G is a reciprocal lat-
tice vector. The summation above must contain all vectors of reciprocal
space because V,(r) depends on the displacements (Ra) which are not in
general periodic in a primitive lattice translation. Since the displacements
are small, we assume that #,I is related to the unscreened ionic potential
9. by the inverse dielectric function c1 (r, r) as described in section 3. In
this context the unscreened ionic pseudopotential, v,, is the potential of
the nucleus and the core electrons associated with the basis ion a. If the
crystal is monoatomic, v. is independent of a. v. behaves like a Coulomb
potential at long distances, but has a repulsion for short distances due to
the core electrons (see [17]). A more exact expression for this potenti as
given in the chapter by Fischetti and Higman.

In terms of the bare pseudopotential and the dielectric function,

DV(q + G) = 1 f dar ,-d(,+O). E O(Rs). (49)

4 r' 'P (?')Vn.(r' - RI - a),

where Vd is the crystal volume. The resulting Fourier components, DV(q+
G), of the screened perturbation are referred to as pseudopotential pertur-
bations.

From section 3 we can write equation (50) in reciprocal lattice space as,

aV(q + G) = -i E
Is

E'-j,-(q + G,q + G')(q + G')e'(R*+O)('+G')9,(q + 0). (50)
a,



The result of equation (50) comes from the recognisation that Vxw.(r-
A - a) = -V,9.(r - A - a), and an application of the shifting and
derivative properties of the Fourier transform. We do not need to consider
the frequency dependence in (50) since in the adiabatic approximation, the
ions are assumed to be stationary.

Substituting the expression in equation (11) for O(R) into equation
(50), we can write,

aV(q + 0) = Val [j() + j(-q)J £. (51)

(q + G'), -'(q + G, q + G'),.(q + G4) -((I ')e - I(g'-'- ").R.

Concentrating on the sum over 5, we can make several simplilcations. First,
G'.R? is always 2s, so the 0' in the first exponential can be Ignored. Second,
if q' 6 q + G" with G" being any reciprocal lattice vector, the sum vanishes
because

.'- = Nsq.¥ .. (52)
I

Hence, we can considerably simplify equation (51) and write it as

OV(q+ G) = z [] [aj W+o)+(-d

(q + G')c-'(q + Gq + G')v.(q + G') - 't, (53)

where the fact that 0 = Vol/N, the unit cell volume, has been used.
Equation (53) is substituted into equation (48) to give the fan electron-
phonon perturbation V,(P) in terms of the bare ion pseudopotential and
the dielectric function.

4.2 General Electron-Phonon Matrix Elements

To calculate the matrix elements of the electron-phonon interaction as re-
quired in the scattering kernel (see section 2. equation (29)), we need only
calculate the matrix element of et(9+0) ' between Bloch states. For exam-
ple,

< n , I Vp(r) I nk >= E OV(q + G) < n'k' I e'(9+0 " I nk >. (54)
to

where I nk > are the normalised Bloch states N- u,(r)e"" of band
index n and wave vector k. The phonon raising and lowering operators
in equation (53) have already acted on the phonon occupation states to
give Ndg as in section 2, equation (26). The electronic pert of the matrix



element provides conservation of the total crystal momentum as follows:

< n'k' ei( +G)'" I nk >=
1f -,.(,)-.(,) v'< '("-)d"r (55)

= (56)

Here, the integral in (55) was factored into a sum of integrals over the
primative cell. The result of (56) follows from the identity given in (52).
The aY in the Kronecker delta refers to a general reciprocal lattice vec-
tor, not necessarily the particular G in the integral. When G 6 0, the
scattering process is called an Umklapp process (assisted by a reciprocal
lattice vector). In the following sections, 4.,j, always implies that Umk-
lapp processes are allowed (5a0,s*t -" S, *a,), although the G will be
suppressed in the notation. If an Umaklapp process occurs, then an extra
term, € G #,, appears in each integral.

4.3 Phenomenological Phonon Scattering Processes
The form of the electron-phonon matrix element as given in (54), written
in terms of microscopic quantities is exact within the rigid-pseudo-ion ap-
proximation (see the chapter in this book by Fischetti and Higman) [19].
However, because it requires a detailed knowledge of both the dielectric ma-
trix and the bloch wavefunctions, it is very diflicult to calculate. With some
approximations, simple forms for these interaction matrix elements which
correspond to well known phenomenological scattering processes in semi-
conductors can be demonstrated (2]. In particular, the acoustic and optical
deformation potentials and the polar optic interactions can be extracted
from (54), and the approximations leading to these familiar processes can
be examined.

From equation (53) it is apparent that V(r) can contain both ong
rnge and ,AoMt range components. Long-range components vary negligibly
within the unit cell and produce fields, whose average over many cell lengths
does not vanish. The long-range components are therefore responsible for
the macroscopic fields produced in the crystal, which have been identified
with the phenomenological polar optic interaction in polar materials, and
the piesoelectric interaction in both polar and nonpolar materials ([21). In
contrast, the short-range components of the perturbing potential involve
rapid oscillations within the unit cell, and consequently, their average on
any macroscopic length scale vanishes. They do, however, contribute to
scattering through the phenomenological deformation potential interaction.

The separation of V(r) into short and long-range components has been
shown by Vogl by considering the behavior of OV(q + G) as q --. 0 [2). We



quote only the result,

V€r), = e.f [ +Eei VC +G.9) I V,) (57)

Vp(r),, = F ,'(,I')-av(q + G), (58)

where V,(r),, and Vp(r),, are the long and short range components respec-
tively.

4.3.1 Phenomenological Deformation Potential

The electron-phonon matrix element for the short-range interaction is ob-
tained by combining equations (58), (53) and (55). The resulting matrix
element can be recast into the form of the deformation potential interac-
tion, and will be shown to involve, for small q, dilation for optical modes
and elastic strain for acoustic modes. For large q, the form of the phe.
nomenological intervalley scattering matrix element will be discussed.

We start by putting < wak' j V,.)., I nk > into a more manageable
form for a crystal with a basis of two (a = and a = 2). For a crystal
with a basis there are two phonon types, optica and amuaic, and they
behave quite differently. For acoustic modes, lim,..ow(q) -# 0, correspond-
ing to a rigid displacement of the entire lattice, whereas, for optic modes,
lim -.0 w(q) -. t,, 4 0 corresponding to rigid displacement of the two sub-
lattices. The latter case can cause transitions between the adiabatic Bloch
states leading to scattering, but the former case cannot lead to scattering
[20]. For small q it is possible to write the phonon polarization vectors,
(, asC = Km'/,4, and ( = ,Km,' , where f is a Unit vecto,
K is a constant, and the plus (minus) sign is chosen for acoustic (opti-
cal) modes. Furthermore, in this limit, there are three acoustic and three
optical branches corresponding to two modes polarized transversely to the
direction of propagation and one poplarised longitudinally.

< I''N V,(r),, I > = (NI(2) + (6 9)

-i 4',f <ak ne-l~"V(r) Inkh> .4f
with V" given by comparison with (58) and (53). p can be chosen to be
the reduced mass. Since, the final form for (59) is phenomenological, the
constant can be chosen to accommodate the choice of p.

To compare (59) with the phenomenological forms for deformation po-
tential scattering, we expand e'q in a Taylor series in q and look for the
higest order non-vanishing terms.

For small q, the exponential in equation (59) can be expanded as el t
I+ iq.r. For the acoustic phonon cae, the highest order term in (59) which



does not vanish is the q. r term, since as discussed above, the constant
term corresponds to a rigid displacement of the entire crystal which cannot
scatter [2). For a particular mode j, (59) then becomes

< Wk' I Vp(r)., I nk >.. = ( i,(T) +Lhi )

6,.i*v, <n'k' I (q... + qyr, + q.r.)V.,(r) jk > .4 (60)

Equation (60) can be put in the form of the familiar deformation po-
tential interaction as first' expressed by Shockley, which for a given phonon
branch is [211-[231,

4 ',kq(ir~(T) + 1 * 1u E aSa

The terms in (60) correspond to the following terms from (61):

= < n'k' [(V/'),ri + (Vi'),lri I nh> (62)

where (VjI): is the It component of Vi', and

+ a, (63)
S, = . j( + f ) = + f)

Since the displacement, %, is proportional to 4."', Sa is the elastic strain
tensor [25]. Thus, Ea is the deformation potential tensor which couples
the local strain set up by the acoustic phonon to the scattering matrix
element as given in the phenomenological theories of scattering by acoustic
phonons. Equation (61) is valid for small q, which corresponds to intravaley
scattering for low energies and represents the anisotropy of the coupling
constant. For larger q, higher order terms in iq. r come into the integral
in (60), and hence the coupling to the phonon wayevector involves higher
rank tensors.

Now, returning to (59) for the case of optical phonons, the highest
order term which can be non-zero is the zero-order term. In contrast to
the acoustic mode case , the zero-order term can be nonsero because when
q --t 0 for an optic mode, the two sublattices are Agidly displaced with
respect to one another, and this can scatter carriers. Thus, for the case of
optical phonons, we look to highest order at the zero-order term and write

< n'k' I V(r),, Ink >., = (64)

-i N(T) + , ,., <1 a ' (I ) 1,k > -4,

This is valid for small q (intravalley scattering). Equation (64) can also be



written in terms of an optical deformation potential vector D,, as,

< *'k' I V,(r),, I nk >., = (65)

Xd() +I~hI h D., - d&'J (68)

The form of the electron-phonon matrix element for small q and optical
modes involves a direct dilation of the local crystal structure as seen from
the dot product coupling D.,. . Thus, 66 yields the phenomenological opti-
cal deformation potential matrix element ([25]). It has been shown that for
symmetry reasons the intravalley optical deformation potential scattering
vanishes for X and Fs valleys for the sero-order matrix element discussed
above [26]-[2?]. In general, the higher order tensor coupling (acoustic-like)
can be non-sero.

While for small q the phenomenological form of the deformation poten-
tial interaction for acoustic and optic modes is quite difrent, for large q,
the coupling contains many complicated higher order tensor modes. The
standard treatment for these situations assumes that, for a particular inter-
valley transition (for example, X-X, F - X), q Is conlined to a small cone of
allowed directions. Because the angular orientation is fairly constant within
this cone, the tensor coupling can change only a small amount for any scat-
tering into the cone. Then, it may be approximately correct to treat the
coupling for intervalley transitions by a constant. Usually the intervalley
deformation potential matrix element is written phenomenologically as [24]

<= +k' I V,(r)8, I n>; = D,[

(67)
Both acoustic and optical modes have been shown to participate in

intervalley scattering with this type of scattering rate. It has been shown,
for instance, that to fit experimental values of conductivity in silicon, it is
necessary to include acoustic phonons in intervalley scattering [281. It is
evident from the nature of the integral in (59) that the coupling is widely
determined by the orientation of the final valleys and the phonon branch.
Thus, for each phonon branch and each set of initial and An valleys, a new
intervalley coupling constant, Dj,, must be chosen. Typically, the values
for D, are selected to best fAt experimental data for a given Monte Carlo
simulation (29]-[SJ.

Finally, for the phenomenological deformation potential interaction, some
authors have factored out the overlap integral,

(n'', n) = f (r .;.(), (68)

from the matrix elements. This is only valid for the long range interaction,
as discussed in the next section, and can readily be seen from (56) and (57).



4.3.2 The Phenomenological Polar Optical Interaction

In this section, the phenomenological polar optic phonon matrix element
will be derived fromn the long-range matrix element in (57), using the equa-
tions of macroscopic electrostatics (21. The first step is to factor out of (57)
all terms proportional to the Coulomb potential v(g) oc 1/? so that the
behavior of the matrix element for small q is clear. These terms can be
factored out giving,

<a'h' IV,(r), Ink>,,. = -iV.(q)I(a'h', nk) (89)

V,.(q))

with,

N.11(71 (a ()~~ [~~j (70)

The quantity ZZf is the remainder of (57) after the singular I1q terms
are removed (see Vogl [2)). The whole matrix element is proportional to lq
and so, acts quite differently than the deformation potential matrixeleznent.
Here, e(q, q) = e(q), the macroscopic dielectric function. Equation (89)
is a fairly intractable formula, since the function Zhfis generally difficult to
calculate. However, their exists a simple expression for Z. which can be
seen by using macroscopic electrostatics. This is only -possible because of
the long-range nature of the perturbation discussed earlier.

The term containing the product (;N.11 (T), can be treated as the
effective phonou polarizatiox vector, v. In addition, V,.(q) is the true
macroscopic potential perturbation set up by this phonon. As such, it can
be examined using macroscopic electrostatics and related to the polarization
wave of the phonon.

Two equations from macroscopic electrostatics directly apply: first,

V - D(r) = V.- (eoE(r) + P(r)) = 0 4-- R(q) = -P(q)/ro (71)

in the absence of excess charge (charge neutrality is not necessary for the
proof but it is a convenient assumption), and P(q) is the polarization.
Second,

V.- V(t) = -eE(r) -C- iqV(q) = -e(q) -4 (72)

where V(r) is the potential energy felt by an electron. Together these
equations give

sqV,. (q) = .4.- P(q)/co (73)

which can be substituted into (3.25) to give

< a'k' I Vp(r)1, I nkh >,~ , k4. ePo q (74)



Comparing 74 with 69 yields the polarization P(q) in terms of microscopic
quantities.

For small q, P(q) is the dipole polarization set up by the optical phonon
mode in the crystal. For larger q P(q) acquires higher order poles (quadrupole
polarization, etc. ). We are only interested in the small q limit for polar op-
tic phonon scattering, so for these purposes, P(q) a Pdua.. Fortunately,
the dipole polarization associated with a long wavelength mode is easily
calculated from a self-consistent, first order lattice dynamics theory. The
result is that 321,

4.0 = (75)

where e• is the effective dipole charge associated with a longitudinal optical
phonon and u is the ionic displacement. Furthermore, an application of the
well known Lyddane-Sachs-Teller relation relates the effective charge, ej,
to the experimentally tnown quantities e,, ea. and the longitudinal optical
phonon frequency at zone center w,o (32]:

(ej)' = fkop4 4 , (78)

This allows us to rewrite (69) for small q in a more transparent form
involving experimentally known quantities:

nk .= I(e24 M ; I(,,. n) (77)< -'k'l jV,(,, j .k >,.= o

or, in the familiar Frohlich interaction form,

j< n''I V, (')I, I >,."~ 1 Z'(n'k',nsk) (78)

S,,,,,, (N.(n)+ 1 I) * (U m)

Pure transverse modes do not scatter because for them, #. = 0.
So, only longitudinal modes participate in polar optical phonon scattering.
Also, although not stated explicitly, the Frohlich interaction (78) vanishes
in non-polar crystals. The reason for this is obvious on physical grounds-
in a non-polar crystal, no dipole polarization can arise from optical mode
displacements. Mathematically,

21= 2 (79)

so the sum over a vanishes.
The lowest order (in q) long range acoustic mode process which doesn't

vanish is the scattering due to quadrupole polarization. Piesoelectric scat-
tering results from quadrupole polarisation and can be present in both polar
and non-polar crystals [25].



4.3.3 Phonon Scattering Rates

In the first put of this section the general electron-phonon matrix element,
and the standard phenomenological electron-phonon matrix elements have
been presented. To make use of these rates in a Monte Carlo simulation,
we need to calculate from these matrix elements, the total scattering rates
out of a particular state, and the differential scattering probability between
a given final and initial state for use in the SCBE.

In section 2, it was stated that for weak perturbations and low electron
energies, the Fermi Golden Rule (28) adequately described the scattering
rate into a particular set of final states from a given initial state. The
general form for the total scattering rate, S,..(nk), is the Golden Rule rate
summed over all final states:

= j< n'k I V,(,) Ik >12 6E-40h)-.(k):Ftwf). (80)

where uod is the phonon associated with the particular scatterer in V,(r).
This expression can be calculated exactly using the full electron-phonon ma-
trix element in (53) as discussed in the chapter by Fischetti and Higman.
However, it is standard practice for Monte Carlo simulations to take the-
much simpler route and calculate the scattering rates for the phenomeno-
logical matrix elements of the previous sections.

In fact, in order to obtain closed form expressions for these scattering
rates, it is necessary to assume simple analytic forms for the band structure,
the most general of which is the non-parabolie, ellipsoidal band structure
describing the bands near the minimum of a 'valley'. The analytic form
most often used is,

A2(~ -ks)' (k, _ k) 2  (k. -
+= E( ++ -I) = - h!

where &° is the minimum of-the valley. Accordingly, this description is only
valid near the minimum of a particular valley. In general, the band struc-
ture is very complicated (331, and in the case of hot electron transport, the
electrons are far these minima. One way to deal with this problem is to
calculate the matrix elements discussed above for a full band structure. An-
other, much simpler way is to calculate the various scattering mechanisms
valid near the minima and normalse the scattering rates to the density of
states for higher energies [30]. This is a reasonable approach since most
scattering rates are proportional to the density of states.

In this section the standard scattering rates valid near valley minima
are discussed. Since the derivations leading to the scattering rates from the
phenomenological matrix elements are well known and given in many texts
(see for instance [34] and [36)), we quote only the results here. Typical
values for the phenomenological parameters and material parameters for
silicon ate given in the appendix of this chapter.

However, as a prelimeninary, we list facts useful for deriving them. First,



to transform a summation over k' in (80) into a more manageable integral
over k' we use the transformation [34]

-- 'dk. (82)
(2r)3Jlk'

Note that spin is conserved in phonon collisions. Furthermore, if the m
are equal, these integrals are normally done in spherical coordinates. Then
the magnitude of k can be transformed into an integral over final energy
E by use of the transformation,

dk' = dE1 (1 + 2cEj)m (83)

lIthe masses are unequal, the Herring-Vogt transformation is useful because
it maps the problem into a "starred-space" which has a spherical E(k)
relation [35J:

kd* kiVW -(84)
The problem is then solved in the "starred-space" and then transformed
back to the physical space. As far as total scattering rates are concerned,
this only has the effect of replacing m in the result by mD M (mnimm5 ) 113 .

For intra-valley optical deformation potential scattering:

St. (B)., [N., 1 +, g(E, Aw.,). (85)

where g(E) is the density of states given by,

g(E) = (D)'1/' (1 + 2*E)[E(l + aB))1/ , V > 0 (86)

and D, is the optical deformation potential, p is the crystal density and
.p, is the relevant optical phonon energy. To determine the final state after

scattering, we only have to enforce energy conservation, E(k') = E(k)
-aw,. Any state on this energy conserving surface is equally probable.

For Inter-valley deformation potential scattering:

St4) = . 1 1 g(E ± Aw,. - A.) (87)s,.,( s = ' , 2..+i

where wi, is the intervalley phonon energy for a particular phonon branch,
and Z. is the number of equivalent final valleys. For instance, in Silicon,
there are six X-mimima, and two "different" types of intervalley scattering.
For scattering across to the X-mimimum on the same axis (g-scattering),
Z, = 1; for scattering to one of the minima on the plane perpendicular to
the initial state axis (f-scattering), Z. = 4.

At, is the energy difference between the initial and finial state min-
ire. For X-X scattering in silicon, At, = 0. For r-L scattering in GaAs,
At, f 0.2eV. As in the intra-valley optical deformation potential scattering
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rate, g(E) is the density of states in the final valley. The density of states
plays an important role in all scattering rate determination, but it is most
apparent in the expressions for the optical and intervalley deformation po-
tential cases. The final state is selected randomly from all states conserving
energy, and the final valley is picked randomly from the equivalent valeys.
A list of typical intervafley phonons for Si is given in the appendix to this
chapter.

For intra-valley acoustic deformation potential scatteuing. Be-
cause of the complicated tensor form for acoustic coupling, there is an in-
trinsic anisotropy in the coupling. However, as shown by Conweil, the effect
of this anisotropy is small [24] and can be removed by a suitable averaging.
This amounts to defining an average sound velocity . = (29,1 +9,)/3 where
v: and , are the velocity of sound propagated by transverse and longitu-
dinal modes respectively and an effective coupling strength . E is usually
chosen to fit experimental data. The acoustic phonon scattering rate is[36:

St. = 2(mD)I/ 2(KJPT)(

7-1/2(B) d.. N*(z)(l + 2a F 2cai ,Ts) a

with

N*(z) = (.-''-1+!*A) (89)

and the dimensionless limits of integration: where E a I(mp,, ).
For polar optical scattering: The total scattering rate for polar optical

phonon scattering has been calculated by Boardman-Fawcett-Swain which
takes into account the overlap integrals in (78) [37]. These integrals can be
evaluated for & and k' near the bottom of non-parabolic bands using k- p
perturbation theory. The result is:

I'(kl k) = (ahaj,+cjc5,cosO)2 (90)

,, = [(1 + -E())/(1 + E(k ) /

= (aEk)/( + 2rE~k)J1)



where 0 is the angle between A and k'. Using this expresson for the overlap
integral, the total scattering rate for polar optical phonon scattering can
be written:

S1 .(E) = .'.DLo(m)'/1+ 2= (1 1 . + 1
26/3,,eoA 7(B) C. to + 1 2 ]

A (B In[ , 2(s,-A o (92)

where

A = [4(1 + aB)(1 + @E')(1 + 2aE)(I + 2B')]'-

B (2(1 + aB)(1 + ar) + a,7 (B') + 7(E)1)
c = 2,s912(B' 1 |(E)[4(1 + .E)(1 + ,o,,) + 4[(B')+ 7()f]
B'= B-Awzlo

Because of the 1/hg dependence of the matrix element and the angular
dependence of the overlap integrals, polar optic&j phonou scattering is a
anisotropic scattering mechanism. To choose the fnal state we can use the
Yon Neumann rejection method to pick the angle D between k and IV, which
is given by the probability density,

P(O)dO (aia u+csw osf)3 in d (93)
y(LI) + y(_R) - 27'1/'(E')7 1 /3(B) Cog$ (9v

The azimuthal angle is completely random since the scattering probability
density is independent of #. Thus, we can choose # with a uniform random
number r : r e [0,1] by # = 2zr. The magnitude of the Ing tate
wavevector, h', is selected by energy conservation for th. given scattering
event (phonon emission, or absorption), and thus, the Anal state vector is
completely determined.

5 Impact Ionization

The multiplication of carriers by impact ionization is of central importance
in the theory ofsemiconductor devices both as a limiting mechanism and as
a basis of device functionality. Impact lonisation is a two deetron process,
corresponding to the exact inverse of the Auger process: a highly energetic
conduction bead electron collides with a valence band electron which is
ionized over the band gap, leaving two conduction electrons and a hole. The
process can also occur for holes, in which a highly energetic hole creates
two holes and an electron. Impact ionization for holes can be seen as a
'mirror image' of the impact ionization for electrons, so we will treat only
the electron Impact ionization.

As in section 1, the electron-electron interaction is designated as V.(', v ,
and following section 3, we screen the bare electton-eectrou interaction with
the dielectric screening function. We will neglect the of-diaonal terms of



e-(q + G,q + G; w) and allow q to take on all values in the reciprocal
lattice.

The bare electron-electron interaction is of course just the coulomb in-
teraction between two electrons. Figure 2 shows the impact ionization pro-
cess schematically. States three and four are final conduction band electron
states. State one is the initial electron state, and state two is the initial
valence band electron state. The crystal momenta and band indices are
designated as ki and mi, with i C [1,4]. Figure 2 shows the electron in
states 1 and 2 interacting via the screened Coulomb potential to generate
electrons in states 3 and 4. The final hole state corresponds to the missing
valence electron in state two.

n k3  n4k 4

Pigure 2: Schematic Representation of the screened electron-electron in-
teraction corresponding to impact ionization. Time is plotted veticay.
Notice that the interaction is retarded due do dynamic screening effects.

Since V..(r, ') is a two particle interaction explicitly carrying two spa-
tial coordinates, its matrix elements are between two-particle states. Since
the electrons are fermnions, the two-particle wave-functions must be anti-
symmetric linear combinations of two-particle states with the Pauli spin
matrices. We write these two-particle states as,

Insi ,,;n~=,,2>. = (94)

where the e are the Pauli spin matrices, and *I and #2 are the spin co-
ordinates. The coordinate wave-functions 0 are normalized Bloch wave-
functions. Also, we write the subscript A to signify the anti-symmetrised



state.
In this language, the event shown in figure 2 corresponds to the matrix

element,

M(12; 34) =< njkl1t1 ; n&3 2c" 1A Ve. I nskss; n 4k 4 4 >A • (95)

The matrix element contains four terms with different arrangements of the
coordinates and the wavefunctions. For simplicity of notation we write the
sin~ple product states as 112 >= , (r1)¢,,,(r2 ). Then, equation (95)
expands as

M(12; 34) = (96)

1 [6', .6,,, < 341 V, 112 > - 6,, < 43 1V,. 112 > -

,,.,, < 34 1 V.. 121 > - 4. . < 431 V., 121 >
(97)

For a given initial state spin 0r, there are three distinct physical situations,
with equal proability of occurence corresponding to the different conflgura-
tions of the remaining spiw. indices. They are:

1.01 W2 = O' = '4

2. i c,2: o'1 = O'S, 02 = 0'4

3.01 #2: w . = w4, r2 = o's

The rate for each configuration must be calculated separately, and then
summed to give the total rate independent of spin. For instancc, if we
define,

MI =<341V.I1l2>,
M3 =<43V. jI 12>,

(98)

then the squares of matrix elements corresponding to the spin configurations
in the list above (the probabilities) can be written in terms of M, and M3
as:

1. I M, - M 12

2. I M, 12

3. I M 12.

The sum of these probabilites gives the square of the total effective matrix
element, summed over all internal spins for a given initial spin which we
designate as M, and write as:

Mg'., = 21 M, I' + 21 M2 I' - (Mj*M2 + M;M ). (99)
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Thus, we need only to calculate MI and M2 to And the total rate. Further-
more, if we And an expression for Mi, M3 is easily found by exchanging the
final state indices, so we only calculate Mi.

The simplest way to include frequency dependent screening in calculat-
ing MI above and the associated scattering rate S(12; 34) is to calculate
the two-particle propagator from 112 > to 134 > in time t, square it to
obtain the probability, and take the time derivative for long times (time
rate of change of the proability of going from 112 > to 134 >):

S(12; 34) = im <34 1 V.I 12 >1I (100)

This is wholly equivalent to the expression in section 2. In figure 2, the
electron in state I feels the screened coulomb potential of state 2 at time

and state 2 feels state I at time e'. The dielectric function retards the
effects of states I and 2 on each other; for instance, even if electron 2
has passed electron 1, the valence electrons may still be readjusting to its
passage and this can effect electron 1.

We write MI = < 34 J % J12 > by letting states 1 and 2 propagate
freely until times t' and t", and then scatter into states 3 and 4 which
propogate until time t. The potential felt at isch time is weighted by
e-l(r"- -; - t'). Then we must integrate over all 1' and tM. This is
basically a restatement of the Feynman rules for a first order, two-particle,
time-dependent interaction which give

MI f dor f #r'#Os(r)0t*(v'r i~~'))P -' I (t

(101)
with

P fst)61 -i21 Id9 ) -
Itt 'e '-'''' e 'e- ' ( -  qes t ti).

(102)

In equation (101) we have written the Coulomb potential as a Fouder series
over vectors in the reciprocal lattice q. If(t) is easily evaluated by making
a change of variables in the t" integral to t - te. Then,

15)= -(~+~) ~ 4 ((ifaIW 4 i dgine'f1wstF4YIl(q,sIe).

(103)
Since we need only the large t limit, the inner integral becomes -I (q, w3 -
w4). In (101) we can evaluate the spatial coordinate integrals by using the
trick in equation (56) section 4.

1

M= VOR f,..,+f+o,..._,+. fdar fd1; (104)

q2 e(q, ,2 - ,,4)



In the above equation, G and G3 are arbitrary reciprocal lattice vectors.
For a given set of ki, q is determined up to a reciprocal lattice vector. We
have the following crystal momentum conservation laws:

1. k 4-k+q+Gt = 0

2. k&-ki-q+G 2 = 0

3. kr + k3 - ks -k 4 = Go = G1 +G 2

The last equation, which follows from the first two, asserts the conservation
of crystal momentum for the entire process. Furthermore, we can write each
of the Bloch wavefunctions as sums over reciprocal lattice vectors (since
they are lattice translation invariant):

u,.,(,.) = z,..,(G)e'*". (105)

Then,

Mt= + x; Ii,._a,.+9,-o.() (108)

z (G)z3(Ga + G4 - as - Go) (Gs)z4 (G4)

Vol k1 - ks +01 - 1a 12
(107)

This form is particularly well suited for numexical calculations since the
expansions in (105) can be calculated by pseuQopotential bad structure
calculations. To calculate the scattering rate given in (100), we must square
(106) and take the time derivative. The only time dependence in the mag-
nitude squared of 1,(t) is in the t' integral in equation (103). The time
derivative of this gives the Golden rule rate expression as in equation (28).

Now, we can combine (106), (99) and (100) to obtain the total impact
ionization scattering rate S(12; 34) summed over secondary particle spiw

S(I2; 34) = M8. 12 6(El + 32 - .E - E443+,,,,0+060(8)

m, = mII +IMI- 1 .(Mm2 +Mm )

mt= E z(G)x2(Gs + 04 - G1 - Go)4(Gs)z; (G,)

k1 -aG& Vol qe(w, ws - .4)
i = i k- ks+ G&-aGs

=: k 1 -k 4 +G 1 -G 4

Go = k1 +k - k - k4

This expression was first obtained by Kane [383.
To get the total scattering rate we need only sum over the two inde-

pendent k vectors and the secondary particle band indices in in S(12; 34).
Given *I and ks, the total impact ionisation scattering rate, Sj, from that



state is simply,

Suj(nIkr) = S(12; 34). (109)
mS1 3 8 R hjh4

The wavevector sums (109) run over the first BZ. Go is then the Umklapp
wavevector necessary to ensure that k3 is in the first BZ for a given k1 .

To gain some qualitative insight into equation (109), we look at the
two consevation laws it implies-conservation of crystal momentum and
conservation of energy. First, energy conservation requires the initial elec-
tron to be at least B, (gap energy) above the bottom of the conduction
band in order to excite a valence electron across the gap and into some
conduction band state. Therefore, E, is a minimum energy for impact ion-
ization. Additionally, the conservation of crystal momentum further shifts
this minimum energy. The smallest energy necessary to initiate an im-
pact ionization event in a particular band structure is known as the impact
ionization threskold energy Bi,.

Some authors have defined a wavevector dependent E,, by minimizing
B, (the initial electron energy) for a given ki with the energy and momen-
tum conservation constraints. This minimization procedure requires that

VhE 2(k) = V5E3(k) -:- VE4k). (110)

We shall re-evaluate the usefulness of this result later. Now we will look at
the first attempt to evaluate the impact ionization scattering rate known as
the Keldysh formula. The Keldysh formula makes two rather extreme ap-
proximations. The first is to approximate the matrix element as a constant,
and the second, to assume simple parabolic bands. Of these, the second is
very poor, yet the resulting formula, known as the Keldysh formula, has
received considerable attention in the past. The result given by Keldysh
involving the two adjustable parameters P and B is [40]:

S~tsrk) =SIIAh(I)(1)

Typically, 1 < P < 2 and S, is the total phonon scattering rate. Although
this phenomenological form is simple to use, the approximations leading to
it disregard the important features of the band structure, which at the
high energies involved in impact ionization, has no resemblance to simple
parabolic bands.

A much better solution for the impact ionization rate in silicon was
given by E. 0. Kane [38] in 1967. He numerically calculated the rate in
equation (109) using the expressions developed in equation (108). First he
calculated the pseudopotential band structure and wavefunctions (see the
chapter by Fischetti and Higman) and used them to calculate the dielectric
function in the RPA approximation (see equation (43)). The summations
in equation (109) were evaluated by employing a Monte Carlo integration
algorithm. The results of this calculation for S,,(R), (S,(h) averaged over
all k with E(k) = E) are shown in figure 3.

Figure 3 also plots the impact ionization scattering rate in silicon calcu-
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Figure 3: Impact ionization rates in *- I for silicon averaged over initial
electron energy measured from the bottom of the conduction band. Dashed
curve, Kane's result; solid curve, no collision broadening-, dotted curve,
collision broaenig.

3-

0.5

2. -

Ts -4 -3 -2 .1 0 1 2 3 4

Eneqy WAaswed han ConwAKiWn-5andgg (WV)

Figure 4: Secondaries produced by impact ionizing electrons in silicon.
Solid curve, initial electron of 1.5 eV; dashed curve, 2.5eV; dashed-dot,
3.SeV; dotted, 4.5 eV. The two sets of curves correspond to holes for the
B < -E a, and electrons, for B > 0.



lated to include the effects of collision broadening and the intra-collisional
field effect (see section 2) [41]. The effects of high fields and high phonon
scattering rates on the impact ionisation process shift the threshold down
from that obtained by Kane. Figure 4 shows the distribution of secondaries
(two final conduction electrons and a hole) produced initiating electrons of
various energies. These distributions include collision broadening, which
has a large effect near threshold.

Figure 5 addresses the question of k-space anisotropy for the impact
ionization scattering rate. As discussed above, it is possible to calculate a
wave-vector dependent threshold which would seem to be relevant to the
anisotropy of the scattering rate. It is, however, difficult to guess an ap-
propriate form for the scattering rate as a function of this threshold which
is consistent with the true physics in equation (109). For instance, the
wave-vector dependent scattering rate may not even be directly related to
these thresholds for energies greater than Eth(k). Furthermore, if collision
broadening is included (an important effect for high energy electrons for
which the phonon scattering rate is high) the threshold condition is greatly
relaxed. Figure 5 shows the impact ionization rate in silicon for electrons
on the equi-energy surfaces E(k) = 2.5eV and E(k) = 3.0eV for electrons
in the second conduction band in the k, = 0 plane [41]. As can be seen
the scattering rate shows little anisotropy. In addition this energy range is
important for impact ionization in transport calculations [42], so it is prob-
ably a good approximation to use the average, energy dependent scattering
rates given in figure 3, for most Monte Carlo simulations.
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Figure 5: k-space anisotropy of the impact ionization scattering rate in
silicon for electrons with k, = 0 on the equi-energy surfaces E = 2.5eV
(solid line) and B = 3.0eV (dotted line). The angle is in units of ir from
the ky axis.



6 Ionized Impurity Scattering

For even moderately doped semiconductors, ionized impurity scattering
plays an important role and can dominate the total scattering rate for high
doping concentrations. At 300K when doping densities reach levels above
10ieml, scattering rates for ionised donors (acceptors) become comparable
to low energy phonon scattering rates, while at low temperatures ionized
impurity scattering becomes even more important since equilibrium phonon
populations disappear exponentially as T - 0. Thus, in cases of high
doping or low temperatures, an accurate Monte Carlo model must include
ionized impurity scattering.

Ionized impurities are usually assumed to be simple Coulomb potentials
with a charge Ze (e the electron's charge). Typically they are associated
with ionized acceptors or donors. At first glance one may propose that the
ionized impurity perturbation Vi(r) is just this Coulomb potential, calcu-
late the scattering rate for one impurity and multiply by the total number
of "*-ipurities. Unfortunately, the calculation of ionized impurity scattering
rates in this way is complicated by the long range nature of the Coulomb
potential associated with the ions. Unscreened, the interaction of a single
carrier and an ion leads to a diverging scattering rate which is of course
an unphysical result. Therefore, the view of the ionized impurity interac-
tion as one electron interacting with a single Coulombic potential cannot
adequately describe the situation. Although there are many problems with
this simplified model, the two most flagrant are the neglect of mobile charge
screening, and the correlation of the other charges present. Each of these
limits the effective length of the Coulomb interaction and removes the sin-
gularity. The first is treated by the Brooks-Herring Model [43], and the
second by the Conwell-Weisskopf model [44]. A third model proposed by
Ridley, called, Third Body Ezcluio., reconciles these two approaches [45].
We will treat each in turn.

6.1 The Brooks-Herring Model

The Brooks-Herring model assumes that the electron (or hole) interacts
solely with one ionized impurity site and deals with the many-body effects
by introducing mobile charge screening. If mobile charge densities are high,
it is necessary to include the effects of electronic screening, and these effects
will limit the scattering rate to finite values.

Because the Brook-Herring model assumes that a carrier sees each charge
one at a time, in a semiconductor sample with NO+ ionized donors and N;
ionized acceptors we must add the scattering rate due to each separately
instead of using the net charge present. Thus, compensated ions can con-
tribute to the total scattering rate as well. For this model, we will assume
Nt., total ionized impurities of charge Ze.

Next we turn to Thomas-Fermi screening theory of section 3, equation
(46). If the distribution function is Maxwellian, (46) reduces to the Debye-
Huckel screening formula, introducing a screening length proportional to



the square root of the mobile carrier density n:

-= e,2n (112)e~ oe, KT

The Fourier transform of the screened ionized impurity potential V(q) is:

Ze 1 Ze
v,()= ee rp(q ) = eeo(q + k.(113)

For Kr 6 0 in equation (113) there is no divergence for small 9, and
therefore, there is no problem with infinite scattering rates. For degener-
ately doped semiconductors, the situation is more complicated, however an
effective screening length can still be calculated from (46).

In real space, the Coulomb potential acquires an exponential tal as:

W Z93 *Ill,.I (114)41e,to it- RI

where R is the location of the ion. It should be emphasised that the screened
potential approximation is not necessary to limit the cross section to finite
values. In fact, at low mobile charge density, kpr may not be sufficient to
screen the potential and a model similar to the Conwell-Weisskopf method
must be used.

In this section we will assume simple plane wave states for the electrons
which is a good approximation for low energies. Ionized impurity scattering
is essentially important only for low energy electrons, because, the phonon
scattering rate dominates the impurity scattering rate for high electron
energies.

We write the perturbation matrix element between plane wave states
as Mb&, where k is the incident wave vector and k' is the scattered wave
vector as

I f fe . Z' .k,,If-R e"'dt (115)
M, V 4e,o I r - R I

(Vol, the volume of the crystal, enters because of normalization). The
matrix element in equation (115) is found by taking the integral over into
spherical coordinates with the asimuthal axis being in the direction of q
h' - k. The result is:

M5 , = iZe 2 el'A q (116)=e, eoq Volkjr + q3

Finally, the scattering rate S(k, W) is given by the Fermi Golden Rule (see
equation (28)). From equation (116) we can calculate the total scatter-
ing rate St.# by integrating S(k, k') over all A'. Assuming spherical non-



parabolic bands.,

2W (Ze)3 A2 Vol
S10 C- Ac 2 V- (1rEm s 2 (117)

1 f du WdE,6(Ej - A~)
jduj (kW + ' - 2k",x + T)

Here, u is the cosine of the angle between k and k'. Since the ion is strongly
coupled to the lattice and is much more massive than the electron, the
interaction can be treated as elastic, and we can take the term El equal to
the energy of the final electronic state with wave vector k' and EB equal to
the energy of the initial electronic state with wave vector k.

The. total scattering rate is (43]

Sto = 32z(2m ) En (118)

(I + 2E) f 1
-?/(E) 7(kTr/2k)3(l + (krp/2k)'))J

where N is the total density of impurities (N = N1,./Voi). It is important
to notice that we have simply summed the interaction of a plane wave and
a Coulombic center over all the centers present; we have not calculated
any many-body effect other than mobile charge screening-the calculation
is a two-body calculation. The probability of a scattering into angular
increment d9 about 9, (9 is the angle between k and k') P(9)dO is

P(9)dO = sin d(
(2k(1 - c ) + .,.)" (119)

To relate P(O)d$ to a uniformly chosen random number, we need only find
the normalised probability that 0 lies between 0 and 9. The result of this
normalization allows us to determine 0:

2(1 12)= - 1 + 4r(kk ) (1)

Thus, we can stochastically determine the final state with only two random
numbers, one for 4 and one for 9. k' must equal k because the scattering is
elastic and k is predetermined. If the bands are ellipsoidal, non-parabolic
bands, we can use the Herring-Vogt transformation mentioned in section 4
equation (84). We need only make two modifications. First, we replace m"
by mD in equation (118). To choose the final state we pick a k' using (120).
Then, we transform it back from the Herring-Vogt space (see equation (84)).

It should however, be emphasised that the screened potential is not
necessary to limit the scattering rate to finite values. In fact, for low mobile
charge density, kpr may not be sufficient to screen the potential and a
model such as the Conwell-Weiskopf model may be more correct.



8.2 Conwell-Weisskopf Model

For comparison with the Brooks-Herring model, we compute the scattering
cross section for the Conwell-Weisskopf model which a.sumes screening by
other ions instead of screening by mobile charges. The Conwel-Weskopf
model assumes that the electron is fairly well localised instead of being
an infinite plane wave as assumed in the Brooks-Herring model. This as-
sumption remains useful up to moderate energies where the electron is
considered a wave packet following a classically defined orbit. By localising
the electron, we can see that in certain positions (midway between ions),
the Coulomb forces from each tend to cancel and there is no interaction.
In this spirit, Conwell and Weisskopf limit the impact parameter b to half
of the mean distance between ions,

brn. = N (121)

where the impact parameter for classical Rutherford scattering is the closest
approach of the electron to the ion if its path weren't deflected by the
Coulombic force. Thus, this model effectively screens out the Coulomb
force to the average distance between ions, and the unscreened Coulomb
potential can be used to calculate the scattering rate classically with the
Rutherford scattering model (441. The scattering rate evaluated in this way
is: L

sto,(k) = T .JN18 (122)
4 1r

where v(k) is the electron's velocity. The electron equation of motion states
that v(k) = (/h)V&E(k). For parabolic bands then, v(k) = (Ak)/m.

Not only is the Conwell-Weisskopf model more applicable for low doping
densities than the Brooks-Herring model, but it also behaves more reason-
ably for high doping densities than the Brooks-Herring model. If we plot
mobility versus N for both models, we see that the two agree very well for
N, < 1017 cm3 .

6.3 Third Body Exculsion

Both models presented above imply two-body, nearest-scatterer processes,
but don't expressly prohibit scattering from more distant scattering centers.
Ridley argues that, for the sake of consistency, the differential cross-section
o-(k, 9, 0) must be weighted by the probability the the scattering is a nearest-
scatterer process. In doing so, he has found that the limiting eases of both
the Brooks-Herring and the Conwell-Weisskopf models can be obtained.
The method of weighting the cross-section in this manner is called third-
body exclusion. (Note: the classical scattering cross-section is related to
the scattering rate by S(k, , 9) = Nr v(k)c'(k,0, 0)).

In order to determine the appropriate factor we again employ the classi-
cal notion of the impact parameter b. Ridley has calculated the probability,
P(b), that no scattering center exists with impact parameter less than b



from the propability p = 2rNzab Ab that such a center exists:

P(b) = c - ' Ntdbs . (123)

Here, a is the average distance between ions. Therefore, to prohibit third-
body processes, the probability of a scattering event occurring in the solid
angle dOl, must be multiplied by P(b). Thus, we need only calculate 6
corresponding to the cross-section we wish to use. If we take v from the
Brooks-Herring model, we can obtain the limiting cases of both models, so
we follow Ridley and calculate the corrected differential cross-section for it
(45].

o'c the corrected cross-section, can be calculated easily from the Brooks-
Herring cross-section ejr by the following:

Cc = 21 r(h,()e- ''420 sin d (124)

Roer and Widdershoven give the scattering rate So = NI9(k)c as [46]

[ = !x(- j (125)

This scattering rate incorporates screening of both types (mobile and fixed
charges) because it contains both krp and an ionic screening cutoff from the

term in equation (123). Furthermore, it has the advantage that the total
scattering rates are ten to a hundred times lower than the peak values of
the Brooks-Herring and Conwell-Weisskopf models. This is quite important
for Monte Carlo simulations because the higher the scattering rate for all
mechanisms, the smaller the time step must be, forcing simulation runs to
take much longer times. Roer and Widdershoven also show that at least in
the case of GaAs, the low field impurity limited mobilities agree well with
experimental results [48).

To find an expression for the angular distribution from the third-body
exclusion model, we notice that the probability that an electron has an
impact parameter b is pP(b) = 2rXNe-d'''db. This is simply the
product of the probability that a scattering center exists at a distance b
and the probability that no other scattering center is closex. We can relate
P(b)d& to a uniform random number r : r E (0, 1] by the relation:

J0 i/e-,K r 2 &" e- -xgv _ I

= - - e- N ,-"S
= - 1 (126)

Since the relationship between T and 6 is transcendental, the Von-Neumann
rejection method must be used to select a value of b. Then the scattering
angle 9 can be determined from b by inverting the relation

wb(9) = f rar(k,O')sinO'd8' (127)



Then, the relation between 9 and b is

os= - + 4k + 2W1 - krF2] (128)

with K3 = (Ze2)3(I + 2aE)m'k 
(129)

4irA~2e03v(k)

Although still a rather crude model, third-body exclusion is a com-
promise including screening of both types which limits scattering rates to
manageable levels and fits experimentally obtained low field mobilities fairly
well. At high fields, the Born approximation breaks down and other meth-
ods must be sought to include collision broadening effects.
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Appendix

Table of Physical Constants
and Phonon Scattering Parameters for Silicon

The following table gives typical parameter values and material con-
stants for Si which occur in the formulas of section 4. Note that intezvalley
phonon energies are given in degrees Kelvin (Aw = k, ,1 .). Also, the
models shown here are two-valley models- X and L valleys.

Units Tang 301 Canali 471 Sano f48) Yoder 421
a A 5.43 5.43 5.43
p g/cm" 2.329 2.329 2.329 2.329
e CO 11.7 11.7
S, 10 cm/s 9.04 9.037 9.04 9.04
t We 0.10 0.1905 0.19 0.19

"41 10  0.9163 0.9163 0.916 0.916
e.t eV 0.5 0.5 0.5 0.5
Xi, eV 9.5 9.0 9.0 9.5
ing "30  0.12 0.12 0.12068
mg "10  1.59 1.59 1.5942

X-X Intervalley Scattering
fi K (IVn eV/cm) 220 (0.3) 210 (0.16) 210 (015) 220 (0.3)
12 550 (2.0) 500 (3.4) 500 (3.4) 550 (1.9)
A, 685 (2.0) 630 (4.0) 630 (4.0) 68 (1.9)
91 140 (0.5) 140 (0.5) 140 (0.5) 140 (0.5)
g2 215 (0.8) 210 (0.8) 210 (0.8) 215 (1.1)
93 720 (11.0) 700 (3.0) 700 (3.0) 720 (4.3)

X-L Inte Scattering
1 K (10" eV/cm) 672 (2.0) 672 (4.0) 672 (1.8)
2 634 (2.0) 634 (4.0) 634 (1.8)
3 480 (2.0) 480 (1.8) 480 (1.8)
4 197 (2.0) 197 (1.8) 197 (1.8)



References

(11 W. Jones and N. H. Match, T,&ermiml Solid Seale Physics, pp. 611-
613, Dover Publications, Inc., New Yr '- (1985).

[2] P. Vogl *The Electron.Phomon Interactioa in Semiconductors," pp.
75-116, in Physic. of Nonliner 2wuxqwl in Semicosductors edited
by D. K. Ferry, J. R. Barker @ad C. Jacoboai, Plenum Press, New
York, (1979).

(3] J. M. Ziman, lemtnts of Advanced Quantm T1eory, pp. 1-12, Cam-
bridge University Press, New York, (1988).

[41 G. D. Mahan, Many-Particle Physics, p. 12, Plenum Press, New York,
(1981).

[5] R. Kubo, M. Toda, N. Hashitsume, in Statistical Physics, Springer-
Verlag, New York, (1985).

[6] A. L. Fetter, J. D. Walecka, in Quantum Theory of Many Particle
Systems, McGraw-Hill Book Company, New York, (1971).

[7] Y. C. Chang, D. Z. Y. Ting, J. Y. Tang, and K. Hess, AppL Phys.
Let., 42, 1 (1983).

[8] A. Messiah, quantum Mechanics, John Wiley and Sons, New York,
(1958).

[9] 1. R. Barker, ,1. PAys. C:Solid State Physics, 6, pp. 2683-2684, (1973).

[10] J. R. Barker, 'Quantum Transport Theory,* pp. 126-152, in Physics
of Nonlinear 7 ,nport in Semiconductors edited by D. K. Ferry, J. R.
Barker and C. Jaconboni, Plenum Press, New York, (1979).

[11] D. K. Ferry, Semiconductors, Macmillan Publishing Comeny, New
York, (1991). See especially the works of D. K. Ferry and J. R. Barker
and of L B. Levinson as well as the other references in chapter 15.

[12] K. Kim, B. Mason, K. Hess, Phys. Rev. B, 36 No. 12, p. 6547 (1987).

[13] L. Reggiani, Physic. Script,, T23, p. 218 (1988).

[14] L. Sham and J. M. Ziman, 'Solid State Physics - Advances in Research
and Applications,* pp. 270-274, in Solid State Physics edited by F.
Seits, D. Turnbull, and H. Ehrenreich, Academic Press, New York
(1983).

[15] N. W. Ashcroft, N. D. Mermin, Solid State Physics, pp. 338-340, Saun-

ders College, Philadelphia, (1976).

[16] H. Ehrenreich, M. H. Cohen, Phy.. Rev., 115, p. 786, (1959).

[171 G. D. Mahan, Many-Particle Physics, pp. 405-437, Plenum Press, New
York, (1981).



[18] N. W. Ashcroft, N. D. Merin, Solid State Physic, pp. 422-450, Saun-
ders College, Philadelphia, (1976).

[19] J. M. Higman, "Rigid Pseudo-Ion Calculation of the Intervalley
Electron-Phonon Interaction in Silicon,' pp. 131-136, in Computa-
tional Electronics, edited by K.Hess, J. P. Leburton, U. RPavioli,
Iluwer Academic Publishers, Boston, (1991).

(20] P. Bruesch, Phonons: Theory and Eiperiments I, p.63, Springer Ver-

lag, New York, (1982).

[211 W. Shockley, Bell System Technical Journal 30, 990, (1951).

[22] W. Shociley and J. Bardeen, PAys. Rev., 77 pp.407-408 (1950).

(23] J. Bardeen and W. Shockley, Piys. Rev., 80 p.7 2 (1950).

[24] Conwell, E. M., *High Field Transport in Semiconductors," in Solid
State Physics, edited by F. Slts, D. Turnbull, and H. Ehrenreich,
Supplement 9, Academic Press, New York, (1967).

[25] B. K. Ridley, Quantum Processes in Semiconductors, pp. 106-130, Ox-

ford Press, Oxford, (1988).

[26] W. Harrison, Phys. Rev. B, 104, p. 1281, (1956).

[27] G. L. Bi, G. E. Pikus, Sov. Phys ics - Solid State, 2, p. 2039, (1961).

(28] D. Long, PAhy. Rev. B, 120, No. 6, p. 2077 (1960).

(291 Canali, Pi 1 . Re,. B, 12, No. 4, p. 2276 (1975).

[30] J. Y..'Tug, "Theoretical Studies of High Energy Transport in GaAs,
Si and Heterostructures," Ph. D. Thesis, University of Illinois, Cham-
paign, Urbana, (1983).

[31] M. V. Fischetti, IEEE Trans. Electron Devices, (1991). to appear

(321 R. Evrard, 'The Frohlich Polaron Concept,* in Polarors in Ionic Cry.-
tali and Polar Semiconductors, pp. 37-4, edited by Josef T. Devreese,
American Elsevier Publishing Company, New York (1972).

(33] Cohen, M. L., and T. K. Bergstresser, Phys. Rev., 141, p. 789, (1966).

[34] K. Hess, Advanced Theory of Semiconductor Devices, Prentice Hall,
Englewood Cliffs, New Jersey, (1988).

[35] C. Herring and E. Vogt, Phys. Rev., 101, p. 994, (1956).

(36] C. Jaoboni, L. Regianni, "The Monte Carlo Method for the Solution
of Charge Transport in Semiconductors with Application to Covalent
Materals,' Review of Modern Physics 55, No. 3 p. 645, (1983).

(37 W. Boardman, A. D. Fawcett, S. Swain, .J. Phye. Chem. of Solids, 31,
p. 1963, (1970).



[38] E. 0. Kane, Phys. Re,., 159, p. 624, (1967).

[39] C. L. Anderson and C.R. Crowell Phys. Rev. B. 5, p. 2267, (1972).

(40] L. V. Keldysh, Sov. Phys. JETP, 21, p. 1135 (1965).

[41] J. Bude, K. Hess, G. J. lafrate, "Impact Ionisation in Semiconductors:
Beyond the Golden Rule,' to be published.

(42] D. Yoder, MS Thesis, University of Illinois, May 1991.

[43] H. Brooks, C. Herring, Phys. Rev., 83, p. 879, (1951).

(441 E. ConweU, V. F. Weisskopf, Phys. Rev., 77, No. 3, pp. 388-390, (1950).

(45] B. K. Ridley, J. of Phis. Chaem., bf 10, pp. 1589-1593, (1977).

[46] T. G. Van de Roer, and F. P. Widdershoven, J. of Appi. Phys., 59,
No. 3, pp. 813-815, (1988).

[47] C. Canali, C. Jaoboni, F. Nava, G. Ottaviani, and A. Alverigi-
Quaranta, Phys. Rev. B, 12, pp. 2265-2284, (1974).

[48] N. Sano, T. Aoki, M. Tomisawa, A. Yoshii, Phy. Rev. B, 41, pp.
12122-12128, (1990).


